翻訳と辞書
Words near each other
・ Harekala
・ Harekala Hajabba
・ Harekrishna Deka
・ Harekrushna Mahatab
・ Harel
・ Harel Brigade
・ Harel Group
・ Harel Levy
・ Harel Locker
・ Harel Mallac Group
・ Harel Moyal
・ Hardyville, Virginia
・ Hardywood Park Craft Brewery
・ Hardy–Littlewood circle method
・ Hardy–Littlewood inequality
Hardy–Littlewood maximal function
・ Hardy–Littlewood tauberian theorem
・ Hardy–Littlewood zeta-function conjectures
・ Hardy–Ramanujan Journal
・ Hardy–Ramanujan theorem
・ Hardy–Weinberg principle
・ Hardzei Tsishchanka
・ Hard–easy effect
・ Hare
・ Hare & Hare
・ Hare (computer virus)
・ Hare (disambiguation)
・ Hare (hieroglyph)
・ Hare (MCC cricketer)
・ Hare (surname)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hardy–Littlewood maximal function : ウィキペディア英語版
Hardy–Littlewood maximal function
In mathematics, the Hardy–Littlewood maximal operator ''M'' is a significant non-linear operator used in real analysis and harmonic analysis. It takes a locally integrable function ''f'' : R''d'' → C and returns another function ''Mf'' that, at each point ''x'' ∈ R''d'', gives the maximum average value that ''f'' can have on balls centered at that point. More precisely,
: Mf(x)=\sup_ \frac\int_ |f(y)|\, dy
where ''B''(''x'', ''r'') is the ball of radius ''r'' centred at ''x'', and |''E''| denotes the ''d''-dimensional Lebesgue measure of ''E'' ⊂ R''d''.
The averages are jointly continuous in ''x'' and ''r'', therefore the maximal function ''Mf'', being the supremum over ''r'' > 0, is measurable. It is not obvious that ''Mf'' is finite almost everywhere. This is a corollary of the Hardy–Littlewood maximal inequality
==Hardy–Littlewood maximal inequality==
This theorem of G. H. Hardy and J. E. Littlewood states that ''M'' is bounded as a sublinear operator from the ''Lp''(R''d'') to itself for ''p'' > 1. That is, if ''f'' ∈ ''Lp''(R''d'') then the maximal function ''Mf'' is weak ''L''1-bounded and ''Mf'' ∈ ''Lp''(R''d''). Before stating the theorem more precisely, for simplicity, let denote the set . Now we have:
Theorem (Weak Type Estimate). For ''d'' ≥ 1 and ''f'' ∈ ''L''1(R''d''), there is a constant ''Cd'' > 0 such that for all λ > 0, we have:
:\left |\ \right |< \frac \Vert f\Vert_.

With the Hardy–Littlewood maximal inequality in hand, the following ''strong-type'' estimate is an immediate consequence of the Marcinkiewicz interpolation theorem:
Theorem (Strong Type Estimate). For ''d'' ≥ 1, 1 < ''p'' ≤ ∞, and ''f'' ∈ ''Lp''(R''d''),
there is a constant ''Cp,d'' > 0 such that
: \Vert Mf\Vert_\leq C_\Vert f\Vert_.

In the strong type estimate the best bounds for ''Cp,d'' are unknown.〔 However subsequently Elias M. Stein used the Calderón-Zygmund method of rotations to prove the following:
Theorem (Dimension Independence). For 1 < ''p'' ≤ ∞ one can pick ''Cp,d'' = ''Cp'' independent of ''d''.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hardy–Littlewood maximal function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.